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Clinical management of chronic obstructive pulmonary disease

patients with muscle dysfunction

. 1 1 . 1 O 2 . 1
Joaquim Gea', Carme Casadevall’, Sergi Pascual’, Mauricio Orozco-Levi', Esther Barreiro

'Servei de Pneumologia, Hospital del Mar - IMIM, Experimental Sciences and Health Department (DCEXS), Universitat Pompeu Fabra, CIBERES,

ISC I1I, Barcelona, Catalonia, Spain; 2Department of Respiratory, Cardiovascular Foundation from Colombia Floridablanca, Santander, Colombia,

CIBERES, ISC I1I, Barcelona, Catalonia, Spain

Contributions: (I) Conception and design: ] Gea, M Orozco-Levi, E Barreiro; (II) Administrative support: None; (IIT) Provision of study materials or

patients: ] Gea, E Barreiro; (IV) Collection and assembly of data: ] Gea, C Casadevall, S Pascual, E Barreiro; (V) Data analysis and interpretation: J

Gea, M Orozco-Levi, E Barreiro; (VI) Manuscript writing: All authors; (VII) Final approval of manuscript: All authors.

Correspondence to: Joaquim Gea, MD. Servei de Pneumologia, Hospital del Mar, Pg Maritim 27, E-08003 Barcelona, Spain. Email: quim.gea@upf.edu.

Abstract: Muscle dysfunction is frequently observed in chronic obstructive pulmonary disease (COPD)
patients, contributing to their exercise limitation and a worsening prognosis. The main factor leading to
limb muscle dysfunction is deconditioning, whereas respiratory muscle dysfunction is mostly the result of
pulmonary hyperinflation. However, both limb and respiratory muscles are also influenced by other negative
factors, including smoking, systemic inflammation, nutritional abnormalities, exacerbations and some drugs.
Limb muscle weakness is generally diagnosed through voluntary isometric maneuvers such as handgrip or
quadriceps muscle contraction (dynamometry); while respiratory muscle loss of strength is usually recognized
through a decrease in maximal static pressures measured at the mouth. Both types of measurements have
validated reference values. Respiratory muscle strength can also be evaluated determining esophageal, gastric
and transdiaphragmatic maximal pressures although there is a lack of widely accepted reference equations.
Non-volitional maneuvers, obtained through electrical or magnetic stimulation, can be employed in patients
unable to cooperate. Muscle endurance can also be assessed, generally using repeated submaximal maneuvers
until exhaustion, but no validated reference values are available yet. The treatment of muscle dysfunction
is multidimensional and includes improvement in lifestyle habits (smoking abstinence, healthy diet and a
good level of physical activity, preferably outside), nutritional measures (diet supplements and occasionally,

anabolic drugs), and different modalities of general and muscle training.

Keywords: Muscle dysfunction; diagnosis; pharmacological treatment; nutrition; exercise

Submitted Oct 11, 2016. Accepted for publication Oct 26, 2016.
doi: 10.21037/jtd.2016.11.105
View this article at: http://dx.doi.org/10.21037/jtd.2016.11.105

Introduction

Chronic obstructive pulmonary disease (COPD) is
a complex and highly prevalent disorder. Its clinical
presentation is very heterogeneous being characterized
not only by pulmonary involvement but by many different
systemic manifestations and comorbidities (1-3). Probably
one of the most common and best studied systemic
manifestations of COPD is muscle dysfunction, which is
also frequently associated with nutritional abnormalities.
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Muscle dysfunction affects both respiratory and limb
muscles, having important consequences on the quality of
life and prognosis of COPD patients (4,5). In a previous
review different physiological and pathophysiological
aspects related to COPD muscle dysfunction, as well as
those factors and mechanisms involved in its occurrence
were analyzed in depth (6). The present review aims to
describe the diagnostic methods most frequently employed
in the clinical setting as well as those treatments that can be
used for muscle dysfunction in COPD patients.
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Respiratory and limb muscle dysfunction

Muscle dysfunction occurring in COPD patients can
involve muscles from different parts of the body. However,
those involved in ventilation and those located in the lower
limbs have particular importance due to their clinical
implications. Among the former, the diaphragm, external
intercostals and parasternal muscles act predominantly in
inspiration, generating a more negative pleural and alveolar
pressure with their contraction and allowing the air to
enter into the lungs (6,7). Under normal circumstances,
the relaxation of inspiratory muscles is sufficient to cause
expiration, but when an extra expulsive effort is needed
another muscle group is recruited (expiratory muscles). This
happens in different circumstances, being specially relevant
in the advanced stages of COPD, especially during exercise
and exacerbations (6-9). The most important expiratory
muscles are those located in the abdominal wall and the
internal intercostals (6,7). In addition, many other muscles
of the upper chest and shoulder girdle can also contribute
to the breathing effort (6,10,11). In turn, limb muscles are
essential for ambulation and other important activities of
daily life, and therefore, their functional loss will entail
significant limitations to patient physical activity and social
life, impacting negatively on quality of life (5,6).

Muscle dysfunction involves the loss of strength (i.e. the
ability to develop a maximal effort) and/or endurance (i.e.,
ability to maintain a submaximal effort through time) (6).
These functional impairments generate two different
pathophysiological situations: weakness, which is a relatively
stable muscle malfunction that can only be reversed with
long-term measures; and fatigue, defined as a temporary
muscle dysfunction that disappears with rest (6). Both may,
or may not, be present together in the same patient. Muscle
dysfunction is highly prevalent among COPD patients (12-15),
and appears to be caused by multiple factors, although
lung hyperinflation seems to play the most important
role for respiratory muscle deterioration (6,16), whereas
deconditioning, resulting mainly from reduction in physical
activity, is critical to limb muscle impairment (5,17). In
both muscle groups, different systemic factors such as
smoking, nutritional disorders, systemic inflammation,
hypoxemia, hypercapnia/acidosis and some drugs such as
steroids, which are harmful for skeletal muscles, also play
an important role (5,6,17). Respiratory muscle dysfunction
aggravates the already unfavorable situation caused by
changes occurring in the airways and lung parenchyma,
negatively influences symptoms and participates in exercise
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limitation (6,18). Fortunately, the diaphragm and other
respiratory muscles undergo a process of functional and
structural adaptation, which partially counterbalances
the effects of the above mentioned negative factors
(13,19-21). This adaptive process is probably the result
of the overactivity of these muscles in COPD patients,
which probably mimics a “training effect” (6,22). This
circumstance is radically different to that experienced by the
lower limb muscles, which also show a deterioration in their
functional properties (4-6,23), but in the absence of any sign
of adaptation (24-29). As will be seen in detail later, limb
muscle dysfunction has a great impact on the patient’s life
(5,6,30). It is interesting to note that a maintenance of the
normal phenotype and even some adaptive phenomena have
been observed in the upper limb muscles, probably because
of both their occasional participation in the ventilatory
effort and a better preservation of their activity than that
of lower limb muscles (31-33). This in addition, results in a
less pronounced functional impairment (5,6).

Clinical manifestations of muscle dysfunction
Respiratory muscles

As previously mentioned, respiratory muscle function is
most probably the result of the balance between multiple
deleterious factors and a “training effect” resulting from
enhanced activity due to the lung disease. The resulting
phenotype is more efficient than that of limb muscles but still
implies a significant functional limitation. Thus, many COPD
patients actually show a decrease in the strength and/or
endurance of their respiratory muscles (12,14,17,34,35). This
circumstance is relatively common (20-45%) in patients
with a stable disease (12,14,36), reaching 80-90% in those
with multiple hospital admissions due to exacerbations (36).
Respiratory muscle dysfunction is associated with increased
dyspnea (6,18), also conditioning a worse ventilatory response
to both exercise and exacerbations (18,37,38). As a result,
daily physical activity decreases, quality of life deteriorates and
exacerbations and hospitalizations increase. Moreover, the
latter are prolonged, involve special care after discharge (38),
with a higher risk of a hospital readmission (36,39), and a
worse prognosis (40,41). In more severe cases, complete
respiratory muscle failure may occur and the patient will
require mechanical support to maintain ventilation (see next
sections). In addition, in those patients requiring invasive
mechanical ventilation (IMV), respiratory muscle dysfunction
can dramatically hinder the process of weaning (42,43).
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Respiratory muscle weakness can be present due to
relatively stable negative circumstances such as poor
nutritional status, hypoxemia, steroid myopathy or oxidative
stress. However, this situation can also be impaired by
intercurrent acute events such as exacerbations or intense
exercise, which produce an increase in the ventilatory effort
(44,45), adding a component of acute fatigue to muscle
weakness. It is clinically relevant to differentiate these two
phenomena because while therapeutic interventions for
weakness require a medium-long-term interventions (e.g.,
nutritional supplements, training), fatigue requires mainly
rest (i.e., ventilatory support).

Limb muscles

As already mentioned limb muscle dysfunction affects
predominantly those muscles located in the lower limbs,
where deconditioning phenomena are more obviously
present. Limb muscle dysfunction is also very common,
affecting 20-30% of COPD patients (15,46,47), with a
quadriceps strength averaging 25% less than in healthy
subjects (15). Moreover, the functional impairment of
peripheral muscles is present even in the less severe stages
of the lung disease (15). However, when the severity
of COPD is not only classified by the degree of airway
obstruction but through multidimensional indices such as
BODE, it becomes directly related with the presence and
intensity of muscle dysfunction (15).

As in the case of respiratory muscles, limb muscle
dysfunction is characterized by the loss of strength and/or
endurance (4,48). Most clinical laboratories only determine
the former functional dimension due to the fact that the
technical procedure is easier. However, it should be noted
that the loss of endurance cannot always be predicted by the
strength status (48), potentially leading to underdiagnosis
of limb muscle dysfunction. Moreover, COPD patients
show early muscle fatigue even with normal walking (49,50).
Limb muscle dysfunction also has important consequences
for the patient, because it contributes to exercise limitation
and reduction of daily activities and social life, leading to
a quality of life impairment, greater utilization of social
and health resources and a worse prognosis (23,51-55).
It is worth noting that besides the reduction in the level
of physical activity and the perception of disability that
this entails, patients frequently associate psychological
symptoms such as anxiety and depression, which will further
reduce their social life (56), generating a vicious circle that
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worsens their prognosis even more (57-59).

Another point to consider is that limb muscle
dysfunction is often associated with a decreased body weight
and more specifically with a reduced lean mass (i.e., muscle
mass). In fact, COPD patients have on average a 20-25%
decrease in their quadriceps muscle size (60). As a result of
this circumstance, the clinical evaluation of COPD patients
should include not only muscle functional assessment
but also instruments to determine their nutritional
status (anthropometry and techniques providing body
composition).

Muscle dysfunction diagnosis
Respiratory muscles

The functional evaluation of respiratory muscles can be
addressed with multiple techniques, both invasive and
noninvasive, volitional or non-volitional, and more or less

specific (Table 1 and Figure 1).

Clinical history and physical examination

Different symptoms and signs can suggest the presence of
a functional problem in respiratory muscles. For example, a
patient suffering from a level of dyspnea disproportionately
high for the degree of lung function impairment, or a relevant
worsening of this symptom in the supine position (61).
Muscle dysfunction can also be suggested by a poor quality
of sleep in the absence of sleep apnea syndrome. As already
mentioned, difficulties in the weaning process in COPD
patients requiring mechanical ventilation may also indicate
respiratory muscle dysfunction (62). Tachypnea, is also
suggestive, especially if the respiratory frequency is very
high and is accompanied by shallow breathing. The use of
accessory muscles for ventilation or the presence of signs
of thoraco-abdominal or upper-lower chest (Hoover’s sign)
incoordination is also important for diagnosis of respiratory
muscle dysfunction. The same applies to difficulties to
cough and eliminate secretions.

Imaging

Radiology and ultrasound techniques can be useful in the
diagnosis of diaphragm paralysis, detecting the absence of
movement in normal breathing or a paradoxical muscle
movement during a sniff maneuvers (63). A detailed analysis
of the echographic findings may also be useful in the
early diagnosis of muscle fatigue (64,65). Moreover, some
imaging techniques may even allow for an approximation
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Table 1 Muscle function assessment
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Modality Strength Endurance Reserve against fatigue/fatigue
Volitional
Inspiratory Static: MIP (Muller) Repeated MIP (n) Pm/MIP
Dynamic: SNIP (sniff) Tlim (threshold/resistive; constant) Pes/Pesmax Pdi/Pdimax
Dynamic: Pesmax, Pdimax (sniff) MSIP (threshold/resistive; incremental); TTMR, TTdi
MVV—-MSV
Expiratory Static: MEP (Valsalva) Repeated MEP (n) -
Static: Pgamax, Pesmax (Valsalva) Tlim (threshold/resistive, constant) -
Dynamic: Pgamax, Pesmax (cough) MSEP (threshold/resistive, incremental); —
MVV—-MSV
Lower limbs QMVC—-QMVC/FFM Repeated QMVC (n) -
Peak torque Q Tlim (constant load) -

Upper limbs HG -

Non volitional

Inspiratory Pestwitch, Pditwitch (electrical, magnetic) —
Expiratory Pgatwitch (electrical, magnetic) -
Lower Limbs Qtwitch (electrical, magnetic) -

H/L, centroid frequency, RMS
H/L, centroid frequency, RMS
H/L, centroid frequency, RMS

MIP, maximum inspiratory pressure; SNIP, sniff nasal inspiratory pressure; Pesmax, maximal esophageal pressure; Pdimax, maximal
transdiaphragmatic pressure; Tlim, time limit; n, number of repetitions; MSIP, maximal sustainable inspiratory pressure; MVV, maximal
voluntary ventilation; MSV, maximal sustainable ventilation; Pm, mouth pressure at tidal volume; Pes, esophageal pressure at tidal volume;
Pdi, transdiaphragmatic pressure at tidal volume; TTMR, tension-time index of all inspiratory muscles; TTdi, tension-time index of the
diaphragm muscle; H/L, proportion of high and low frequencies in the electromyogram; RMS, root mean square; MEP, maximal expiratory
pressure; Pgamax, maximal gastric pressure; MSEP, maximal sustainable expiratory pressure; QMVC, maximal voluntary contraction of
the quadriceps muscle; FFM, fat free mass; HG, handgrip; Pestwitch, Pditwitch and Pgatwitch, maximal esophageal, transdiaphragmatic
and gastric pressures induced by electrical or magnetic stimulation, respectively; Qtwitch, maximal quadriceps force induced by electrical

or magnetic stimulation.

to the metabolic status of the respiratory muscles in both

COPD patients and healthy individuals (66,67).

Lung function

% Breathing pattern: A high respiratory rate (f) at rest,
especially when accompanied by a low tidal volume (VT),
indicates a ventilatory overeffort and the possibility of the
development of muscle fatigue. The same accounts for an
elongated inspiratory time (TT) or an increase in the ratio
between the latter and the total time of the duty cycle
(TTOT). In this regard, it has been shown that a T1/
TTOT above 40% can only be held for a short time (68);

% Forced spirometry: Marked declines in forced vital
capacity (FVC), with a rise in the FEV,/FVC ratio may
be indicative of a respiratory muscle problem in COPD
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patients. The same can be applied to a 25% decrease in
FVC when changing the sitting position for the supine
position (69);

Body plethysmography and transfer factor for carbon
monoxide (DLco): Static lung volumes, such as total lung
capacity (TLC) or the intrathoracic gas volume [ITGYV, taken
as a value representing functional residual capacity (FRC)]
can be decreased for the same reasons as FVC. Similarly,
DLco may be affected by respiratory muscle dysfunction,
although the Krogh ratio (DLco/VA) remains stable;
Arterial blood gases: In early stages of muscle dysfunction
patients may show moderate hypoxemia and hypocapnia
due to hyperventilation but later on gases will move to
a marked hypoxemia and hypercapnia with a decreased
alveolar-arterial gradient, especially at night (70,71).

jtd.amegroups.com F Thorac Dis 2016;8(11):3379-3400
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Figure 1 Representation of different variables used in the
assessment of respiratory and lower limb muscle function, as well
as the sites where they are obtained. MSIP, maximal sustainable
inspiratory pressure; SNIP, sniff nasal inspiratory pressure; MSEP,
maximal sustainable expiratory pressure; MIP, maximum inspiratory
pressure; MEP, maximal expiratory pressure; TTdi, tension-time
index of the diaphragm muscle; H/L, proportion of high and
low frequencies in the electromyogram; RMS, root mean square;
TTMR, tension-time index of all inspiratory muscles; Pga, gastric
pressure at tidal volume; Pgamax, maximal gastric pressure; Pdi,
transdiaphragmatic pressure at tidal volume; Pdimax, maximal
transdiaphragmatic pressure; Pes, esophageal pressure at tidal
volume; Pesmax, maximal esophageal pressure; QMVC, maximal

voluntary contraction of the quadriceps muscle; FFM, fat free mass.

Sleep studies

The use of a pulsioximeter and a capnograph can help in
the early detection of alterations in blood gases, while the
polysomnography would evidence a poor quality of sleep in
the absence of apneas.

More specific functional techniques

The maximum force of respiratory muscles cannot be
directly determined because of their location. It is assessed
indirectly through the measurement of pressures that they
generate. Such pressures can be obtained in different body
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locations and using different maneuvers.

% Maximum pressures at the mouth: This is the most
commonly used clinical determination for respiratory
muscle strength, being usually performed during a
static maneuver (in the absence of airflow). The Miiller
maneuver, usually done from residual volume (RV),
which can also be performed from FRC, is used to
determine the maximum inspiratory pressure (MIP) (72).
The Valsalva maneuver in turn, usually made from
TLC, which can also be performed from FRC, is used to
measure the maximum expiratory pressure (MEP) (72).
Validated reference values exist for both MIP and MEP
(72,73). It is usually considered that values below 65%
of the reference or lower than 80 cmH,O indicate
respiratory muscle dysfunction (4,74);

% Other pressures: It is also possible to determine the
maximum pressures in dynamic conditions (while there
is airflow). This is the case for the sniff nasal inspiratory
pressure (SNIP), determined in the nostrils during a
forced inhalation. This maneuver has been proposed as
a good alternative to the static one for the evaluation
of the inspiratory strength (75,76), and validated
reference values are also available (77,78). Different
authors consider that for Caucasians a SNIP lower than
-70 cmH,O in men and -60 cmH,O in women indicate
inspiratory muscle dysfunction (4). The simple and
dynamic whistle maneuver has also been proposed to
determine expiratory muscle strength (79), although its
use is still limited and there are no reference equations.
A point to be considered is that pressure determinations
in the upper airways may not be valid if a problem
such as inspiratory collapse or incoordination occurs
at this anatomic level. Unfortunately, this is relatively
frequent in COPD patients (80). Thus, it may be
necessary to perform a more invasive technique with
a catheter, determining the esophageal pressure that
closely reflects pleural pressure (81). The maximal
esophageal pressure (Pesmax) obtained during a
sniff maneuver will express faithfully the overall
strength of inspiratory muscles (82). A Pesmax
higher than -80 ¢cmH,O in men and -70 cmH,0 in
women discards inspiratory muscle weakness (82,83).
Moreover, the ratio between mean esophageal pressure
at tidal volume at VT and Pesmax (Pes/Pesmax)
indicates the relative degree of effort that inspiratory
muscles use in each inspiration and can be useful to
anticipate fatigue. It is also possible to determine the
specific pressure exerted by the diaphragm muscle.

F Thorac Dis 2016;8(11):3379-3400
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For this, another catheter should be placed in the
stomach to obtain gastric pressure at tidal volume
(Pga). The difference between esophageal and gastric
pressures is known as transdiaphragmatic pressure
at tidal volume (Pdi), and when this is determined
during a forced inhalation it is called maximal
transdiaphragmatic pressure (Pdimax), which reflects
the strength of the diaphragm (84). While a Pdimax
above 100 cmH,O in men and 70 cmH,O in women
rule out diaphragmatic dysfunction, values lower
than 75 cmH,O in the former and 50 cmH,O in the
latter are highly suggestive of such alteration (4).
Again, the Pdi/Pdimax ratio indicates the degree
of the muscle effort in each ventilatory cycle, and
values above 40% will be difficult to be sustained for
a long time (68). Both Pesmax and Pdimax can also
be determined during a static maneuver (Miiller),
but this method is less used. Finally, the maximal
gastric pressure (Pgamax) can also be used to assess
the specific strength of expiratory muscles from the
abdominal wall (85). For this, a maximum dynamic
(coughing) or static maneuver (Valsalva) should be
performed (86,87). The strength of the expiratory
muscles can also be evaluated through Pesmax
obtained during an expiratory effort, but in this case
the pressure obtained will reflect Pgamax plus the
contribution of the expiratory muscles of the ribcage;

Non-volitional (instrumental) techniques: A common
limitation to all previously mentioned maneuvers is
the need for a high patient compliance, which is not
always present. To obviate this limitation electrical
or magnetic stimulation (‘twitch’) techniques can be
used. These methods directly activate centers and
nerves involved in the action of different muscles.
Electrical stimulation is more widespread, but has the
disadvantage of being painful and poorly reproducible.
In addition, it is difficult to achieve a supramaximal
level of stimulation with this technique (88,89). By
contrast, magnetic stimulation achieves better results
and is better tolerated, so it will probably have a
progressively broader use in the clinical setting (89-92).
Approximatively normal values are available for
diaphragm and quadriceps muscles with both
stimulation modalities. These values are lower than

Gea et al. Muscle dysfunction and COPD

If Pdimax (twitch) is obtained by direct stimulation of
the phrenic nerve, values below 15 cmH,O indicate a
serious diaphragmatic dysfunction (4), although some
authors consider that weakness already exists with
values lower than 50-60 cmH,O in men and 35-40 cm
H,O in women (4,95);

Respiratory muscle endurance: Although the
evaluation of muscle endurance is probably more
relevant to clinical purposes than that of muscle
strength, the tests designed for this purpose are much
less widespread. Among the simplest tests, but with
very little specificity, is the determination of maximal
voluntary ventilation (MVV). For this, the subject
should try to get the maximum ventilatory volume
during a maneuver that usually lasts 15 seconds, the
result being then extrapolated to 1 minute (L/min).
Another simple but still unspecific alternative is to
obtain the maximum sustainable ventilation (MSV),
which is done at a percentage of VVM (usually
60-80%) (4). The more specific tests designed to
determine the endurance of respiratory muscles
are generally based on repeated maneuvers against
incremental loads or a constant submaximal load
(34,35,96-99). The outcome on the former modality is
the maximal pressure that the patient can sustain for a
specific time, being in fact a mixed surrogate of both
endurance and strength. The outcome of the latter,
which is probably a better reflection of endurance,
is the time elicited sustaining a percentage of the
maximum load until task failure (Tlim) (34,35,98,99).
The loads or resistances, which can be either
inspiratory or expiratory, can be applied through
resistive or threshold devices. The second device
will ensure a certain level of pressure to generate
airflow (97,98). This is a better choice since resistive
resistance require an strict control of the breathing
pattern to ensure a target respiratory pressure (97).
There are some approaches to the reference values for
both inspiratory and expiratory endurance variables
(99,100), but since they have not been unified each
laboratory uses their own equations. Finally, it should
be mentioned that endurance tests can also provide

the metabolic consumption of respiratory muscles
during the effort (101).

those obtained with voluntary maneuvers. In the Closely related to the concept of muscle endurance

case of magnetic stimulation normal reference values is that of muscle reserve against fatigue, a progressive
have been established specifically for the technique

performed at the cervical and phrenic levels (4,93,94).

condition that can lead to task failure. Nowadays, only the
concept of acute fatigue is widely accepted, with the classical
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theory of ‘chronic fatigue’ having been virtually abandoned.
The reserve against fatigue can be evaluated from breathing
pattern and respiratory pressures, obtaining the tension-
time indices, which in turn may be calculated for all
inspiratory muscles or specifically for the diaphragm (102).
The former [tension-time index of all inspiratory muscles
(TTMR)] is the result of the product between TI/TTOT
and either mouth or esophageal pressure ratios (IP/MIP or
Pes/Pesmax, respectively) (103). The tension-time index for
the diaphragm in turn uses transdiaphragmatic pressures in
the equation [tension-time index of the diaphragm muscle
(T'Tdi) = (T/TTOT) * (Pdi/Pdimax)] (68,84,102). Values
close to 0.15 indicate a high risk of fatigue in the next
45 minutes, while values above this limit predict a faster
ventilatory failure (68). A second method for detecting
respiratory muscle fatigue is to determine the maximum
relaxation rate (MRR) (104), which is obtained from the
inspiratory pressure curve. Under experimental conditions
fatigue can also be detected by a decrease in maximum
respiratory pressure induced by stimulation (twitch)
(105,106). Another method used for the diagnosis of fatigue,
which is complex and restricted to specialized laboratories,
is the analysis of the electromyographic signal, and more
specifically the evaluation of the relationships between high
and low frequencies, the centroid frequency and/or the root
mean square (RMS) (107,108).

Limb muscles

Clinical history and physical examination

Muscle dysfunction should be suspected in COPD patients
presenting symptoms in the lower limbs during exercise
(109,110). Moreover, physical examination may reveal a loss
of muscle mass at this level, a circumstance that negatively
influences muscle strength.

Muscle mass

The impact of nutritional status is especially relevant in the
limb muscles. Anthropometric measurements are the simplest
way to detect an impairment in nutritional status. Both the
percentage of the ideal body weight (% IBW) and the body
mass index (BMI) are the most widely used variables. Values
lower than 80-85% in IBW or 18-18.5 kg/m’ in BMI are
the most widely accepted limits to define “low weight”
(111,112). A more direct anthropometric approach to muscle
mass are determinations of the triceps skinfold or thigh
circumference, but both can be misleading and have fallen
into disuse in recent decades (113,114). Much more specific
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is to determine the body composition, generally through
either bioelectrical impedance or dual energy densitometry
(DEXA) (115,116). The most useful parameter is the fat free
mass index (FFMI), which defines a major loss of muscle
mass with values under 16 kg/m’ for men and 15 kg/m’
for women (117). Both techniques are appropriate for
COPD patients (5), but it should be noted that values
obtained with DEXA are somewhat higher than those
provided by impedance (114,118). Moreover, DEXA has an
additional advantage since it can differentiate muscle mass
from different body areas, allowing a specific assessment
of limb muscles. This is important since regional muscle
mass has a bad correlation with the overall body muscle
mass. Different imaging techniques such as computed
tomography, magnetic resonance imaging, positron
emission tomography (PET) and ultrasound can also be
useful to assess the muscle mass of specific areas in COPD
patients (53,119-123).

Limb muscle strength
As previously mentioned determination of the maximum
strength of a muscle is not the best clinical approach to the
assessment of its function, but is simple and easily performed,
also being the most common approach used for limbs.
In this case, maximal force is usually evaluated through
maximal isometric maneuvers, and is expressed in kilograms
or Newtons. The handgrip is the maneuver most often
used for the upper limbs in the clinical environment (23).
Reference values are available (124-126), and although the
threshold for the diagnosis of muscle weakness is not clearly
defined (127), several authors have proposed values below
80-85% pred. (128-130). In turn, quadriceps strength is
usually determined to assess muscle function of the lower
limbs, since this muscle is essential for ambulation. In this
case there are also reference values, which are specific
for different populations (15,54,131-133). Some authors
propose that values of quadriceps strength should be
normalized by the body weight or lean mass of the subject
to better express the intrinsic force of the muscle (134,135).
Other methods used to assess limb muscle strength are to
determine the maximum weight that a subject is able to
lift or their ability against a hydraulic resistance, but both
are complex and not used in the clinical setting. Finally,
a method that has a progressive acceptance is to measure
the peak torque at fixed joint angle speeds using special
dynamometers (134,136), with the results being expressed
in newtonmeters (Nm) in this case.

Electrical or magnetic stimulation can be used in

F Thorac Dis 2016;8(11):3379-3400



3386

Table 2 Muscle dysfunction therapy

Healthy lifestyle
Avoid smoking and alcohol abuse
Good level of physical activity
Balanced diet
Training
Endurance exercise training/interval training/resistance training
Stimulated training
Respiratory muscle training
Diet supplements
Optimize COPD treatment
Bronchodilators
Oxygen (if CRF)
Antibiotics (exacerbations)
Vaccines
Consider other drugs
Anabolics (GH, GH secretagogues, SARM, GFs...)
Antioxidants, antiinflammatories (?)
Calcium sensitizers
Rest
Mechanical Ventilation (NIMV or even IMV if necessary)

Control of comorbidities & measures for healthy aging

CREF, chronic respiratory failure; GH, growth hormone; SARM,
selective androgenic receptor modulators; GFs, growth factors;
NIMV, non-invasive mechanical ventilation; IMV, invasive
mechanical ventilation; COPD, chronic obstructive pulmonary
disease.

subjects unable to collaborate (137,138). The maximum
muscle strength is obtained through a supramaximal
stimulus of the corresponding peripheral nerve (138,139),
and reference values have also been published (123,140). An
alternative method is to administer progressive stimuli to
get a force-frequency curve (5).

Limb muscle endurance

As in respiratory muscles, the determination of limb muscle
endurance is much less widespread than that of strength.
However, different techniques have been proposed, being
generally based on the repetition of maneuvers against
submaximal loads (10-80% according to different protocols)
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at a preset rate until task failure (48,141,142). Repeated
maximal isometric maneuvers have also be employed (143-146).
Unfortunately, there are no reference values for these
methods to date (4,5), so each laboratory should develop its
own equations or have at least a control group of healthy
subjects to make comparisons. It is noteworthy that there
are also methods based on changes in the electromyographic
signal, but they are more cumbersome and only used in
very specialized environments (5). In patients unable to
collaborate electrical or magnetic repeated stimulation of
the femoral nerve may be performed (4,143,144,146,147).

Treatment

There are many factors involved in muscle dysfunction,
and therefore its treatment is necessarily multidimensional.
Triggers should be avoided and those negative circumstances
already established should be counterbalanced with
pharmacological and nonpharmacological interventions
(1able 2). Many of the latter measures are included in the
general concept of Pulmonary Rehabilitation: abstinence
from tobacco smoking, educational activities, a healthier

lifestyle, training, etc. (148).

To stop tobacco smoking

This simple measure will target different objectives. It will
improve the overall nutritional status of the patient by
eliminating the anorectic effect of tobacco, while reducing
oxidative stress, lung and systemic inflammation and the
negative protein balance, which are characteristic of COPD
patients (149). In addition, it will prevent other deleterious
effects of tobacco on muscle function and structure (150).

To increase physical activity

Reduction in physical activity and subsequent deconditioning
is a key factor for peripheral muscle dysfunction, generating
a process where other deleterious cofactors also became
involved. Therefore, this vicious circle must be broken by
recommending an increase in physical activities that should
be outdoors if possible (to avoid vitamin D deficiency),
and treating depressive symptoms if necessary (151,152).
With these measures, hospital admissions will decrease (58),
and in selected groups of patients even the risk of death
will be reduced (153). In addition, many of the structural
and metabolic alterations shown by limb muscles (6)
will diminish or even disappear with exercise (151,154).
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Recovering a good level of activity is also essential for
respiratory muscles in patients who have undergone
mechanical ventilation, especially those who have received
controlled modalities. This is the only situation in which
respiratory muscles of COPD have not been overactive but
have suffered from inactivity and deconditioning (42,155).

Training

A good general training program improves cardiovascular
and muscle function and increases exercise capacity
although not substantially altering lung function variables
(48,154,156-159). General training also reduces ventilatory
and cardiocirculatory requirements, since the body
muscles become more efficient in their use of the oxygen
provided by these systems (148,160). Moreover, it also
has psychosocial effects, improving symptoms of anxiety
and depression (161,162). Training programs vary in their
characteristics depending on the objectives: an overall
improvement of exercise capacity, ameliorations in the
strength, endurance or both in a particular muscle group,
etc. General training has different modalities including
endurance exercise training, interval training and resistance
training, among others. The endurance exercise training is
a crucial element of most rehabilitation programs designed
for COPD patients. Its main objective is to improve the
overall aerobic capacity of the subject. In other words, the
ability to maintain a moderate level of exercise through
time. Therefore, the objective is not only to achieve an
improvement in muscle function but also to positively
condition the cardiovascular system. For this, cycling or
walking at a high intensity (more than 60% of the maximum
tolerated load), 20-60 minutes, and 3 to 5 times per week is
recommended (148). When this training modality has the
right duration, it can result in an increase in muscle mass,
strength and endurance (156,163-168). These improvements
are also accompanied by increases in the exercise capacity,
both at maximal and submaximal levels (148,154,169), and
lower levels of dyspnea (148). There is a general agreement
that an endurance exercise training program requires a
minimum of 8 weeks to get these benefits (154,169-171).
Some authors consider that the exercise intensity must also
cause a high level of respiratory and general symptoms (172).
However, it is also possible to use lower intensities of
exercise or even an 'interval' training (interspersing periods
of high and relatively low intensities) (148) in severe COPD
patients, both obtaining benefits and reducing risks. The
so-called “whole-body training” in turn combines different

© Journal of Thoracic Disease. All rights reserved.

jtd.amegroups.com

3387

activities such as cycling, walking (both at ground and
treadmill), weight lifting and gymnastic conventional
exercises. Its objective is similar to the endurance exercise
training, trying to improve in parallel the cardiocirculatory,
ventilatory and muscle components.

Strength training and resistance training consist of heavy
weight lifting or exercising against submaximal resistances,
respectively, for specific muscle groups. The intensity of
the loads and the pattern of repetitions determine that
improvements would be in strength, endurance or both.
In fact, the intensity seems to have more influence on
strength, while the duration of the exercise has more impact
on endurance (54,164,166,167,173,174). It is well known
that loads lower than around 30% of the maximum muscle
force have no significant effects, while those higher than
40% can already induce an improvement in endurance
(a mainly aerobic property, which depends mainly on the
muscle composition: fiber type percentages, capillary and
mitochondrial densities, etc.). If loads reach 70% of the
maximal force and are applied with few repetitions they can
result in specific increases in strength (anaerobic activity
that is mainly dependent on muscle size) (175). It has been
demonstrated that strength training really gets improvements
in muscle mass and maximal force in limb muscles of COPD
patients (23,46). These improvements are higher than those
obtained with the endurance exercise training (148), whose
objectives and potential benefits are more general.

An important point is to take into consideration the
right moment to initiate high intensity exercise in training
programs, since it is known that an excessively intense
exercise can cause muscle oxidative stress in untrained
COPD patients (174). This negative effect does not occur
in patients who have already achieved an acceptable level of
conditioning (176). However, the level of exercise during
training must exceed that of daily activities to achieve
positive effects on muscle strength and/or endurance as
well as on the cardiovascular system (148). The conclusion
of all these findings is that the intensity of exercise should
be sufficient enough to induce benefits, but established
progressively to avoid adverse side-effects.

One training option is to focus on a particular portion
of the body. This is the case of the programs of upper limb
training (177,178). This modality is designed to improve the
function of muscles of this location but also to get indirect
benefits to ventilation because many of these muscles (especially
the more proximal) also collaborate on breathing (179).
In fact, this type of training has been occasionally shown to
reduce dyspnea in COPD patients (178), although this is still
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controversial (40). Neuromuscular stimulation is another
form of limb muscle training consisting in the instrumental
induction of repeated muscle contractions. It is particularly
appropriate for patients with very limited exercise capacity,
which cannot follow volitional training modalities (148,180).
The stimulation can be electrical or magnetic but there
is still more extensive experience with the former. The
stimulation is performed transcutaneously and can result in
improvements in peripheral muscle function and exercise
capacity in stable COPD patients (180-182), with its
effects not being lower than those of conventional limb
muscle training (183). Magnetic stimulation training,
which is achieved by passing a high intensity electric
current through a copper coil, generating a magnetic and
relatively focal field of action (91), has been introduced in
the last decade. It avoids some of the drawbacks of electrical
stimulation, which can be painful and cause skin discomfort.
The effects of magnetic stimulation training are similar
to those of electrical stimulation (92,184,185), although a
more extensive experience is still needed. As occurs with
conventional training, it is also important to control the
intensity (in this case amplitude), frequency and duration of
the electrical or magnetic stimuli.

It is also possible to specifically train respiratory
muscles (148). This training modality can be done by
repeated maximum maneuvers, isocapnic hyperventilation
or application of submaximal loads through resistive or
threshold systems. Training of respiratory muscles with
the latter type of loads has demonstrated improvements in
their strength and endurance (35). This is clearly indicated
in patients with moderate or severe disease, presenting
dysfunction of these muscles or significant breathlessness
during exercise (148).

Another interesting point to consider is whether to train
patients during or immediately following exacerbations
is beneficial or not. There is some evidence suggesting
that to train during these acute episodes prevents loss of
muscle function and exercise capacity after discharge (186).
This training modality can be performed conventionally
or by neuromuscular stimulation, depending on the actual
condition of the patient (180,187).

Correction of nutritional abnormalities

Since the loss of body weight and muscle mass is an
important factor in muscle dysfunction it must be corrected.
Moreover, many of actions that are beneficial for the
nutritional status also act directly on muscle function. This
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is the case of abstinence from tobacco smoking or increased
physical activity. In addition, a healthy diet (188,189) and, in
some cases, nutritional supplements or even anabolic drugs
should be recommended (115,188,190-192). Moreover, there
are some other nutritional elements which can also be of
interest. This is the case of creatine, whose administration
can improve exercise capacity in other populations (193),
most likely by facilitating the sustained availability of energy
by ATP resynthesis (5). However, creatine has not shown
any clear effects in COPD patients (5). L-carnitine in
turn, is necessary for fatty acid oxidation in mitochondria,
and therefore to obtain energy. Its benefits are clear in
athletes but are more modest in patients (5). In summary,
with the mentioned improvements in lifestyle and dietary
supplements, if necessary, it is possible to maintain a
metabolic balance in many COPD patients. This, along
with exercise, will facilitate the synthesis of structural
proteins in the muscle, which is the basis for muscle
function (192,194-196).

The use of anabolic drugs deserves a specific comment,
given the relevance they may have for muscle function. This
group includes androgens like testosterone and oxandrolone
as well as selective androgenic receptor modulators (SARM).
In general their effects are positive for muscle mass, but
no clear benefit has been obtained on muscle function
(5,197). In addition, except probably for some of SARM,
their negative side effects are too relevant (115,198). Other
anabolic drugs are those related to growth hormone (GH),
which acts through the insulin-like growth factor 1 (IGF-1).
As is the case of androgens, the administration of GH or its
secretagogues (substances that induce release of endogenous
GH from the pituitary gland) is able to increase muscle mass
but without clear functional benefits (5,199,200). Finally,
there are promising results with the administration of
IGF-1, the mechano growth factor (MGF) and other growth
factors in various chronic conditions that affect muscle mass
(201-203), but there is still a lack of large studies in COPD
patients.

Antiinflammatory drugs and antioxidants

Both systemic and muscle inflammation and oxidative stress
appear to play an important role in either muscle dysfunction
or nutritional deficiencies associated with COPD (5,12,40).
Consequently, different biological agents, such as anti-
cytokines and antioxidants, have been tested both in animal
models and patients. However, the results of these studies
have been negative or relatively modest (204-208).
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Optimization of the general treatment of COPD

The use of bronchodilators, and probably of double
bronchodilation, allows us to obtain different improvements
in symptoms and lung function (reductions in airway
obstruction, pulmonary hyperinflation and work of
breathing) (3,209-213). This will facilitate the work of
respiratory muscles contributing to a higher level of
physical activity, which in turn will have beneficial effects
on limb muscles. In addition, metabolic requirements will
be lower promoting a better nutritional status. At present,
there are wide studies that have been designed to assess
the likely synergistic effect of an optimized bronchodilator
therapy associated with training programs (209,214).
Lung volume reduction by surgery or endoscopy may also
have beneficial effects on respiratory muscle function by
reducing hyperinflation and improving exercise capacity
and daily physical activity of COPD patients (215-217).
All these treatments and oxygen therapy, if necessary, will
also reduce the level of hypoxemia and muscle hypoxia.
This in turn will favour aerobic metabolism in different
muscles (218,219), while decreasing competition between
respiratory and peripheral muscles for oxygen supply during
exercise (220). Moreover, correction of tissue hypoxia also
reduces oxidative stress, a relevant deleterious factor for
both nutritional status and muscle function. Since tissue
hypoxia can coexist with relatively conserved levels of PaO,
or Sa0,, the technique of near-infrared spectroscopy (INIRS)
can be useful for monitoring the actual muscle oxygenation
(5,221). Systemic steroids should be avoided or at least
reduced when possible in most severe COPD patients and
during exacerbations since they can induce muscle atrophy
and even cause a true myopathy (222-224).

Antibiotics and prevention of exacerbations

These acute episodes have several negative consequences on
factors involved in muscle dysfunction. On the one hand,
exacerbations lead to an increase in pulmonary and systemic
inflammation (225). On the other, they are associated with a
more sedentary behaviour that can be extreme in bedridden
patients, and a frequent need of treatment with systemic
steroids (17,187,224,226,227). Moreover, exacerbations
induce an increase in the work of breathing and therefore,
in the overall energy consumption by respiratory muscles.
Thus, an adequate prevention and treatment of these acute
episodes is also essential to prevent deterioration of muscle
function in COPD patients.
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Mechanical ventilation

Rest is definitely the best therapeutic measure when a
component of acute-subacute muscle fatigue is present.
Ventilatory support reduces the workload of respiratory
muscles (228,229), while having other beneficial effects on
ventilation and perfusion. It also decreases the metabolic
burden of these muscles, which can redirect energy resources
to limb muscles and other body territories. There are two
main types of non-invasive mechanical ventilation (NIMV),
which is usually applied by a nasal or nasobucal mask,
and invasive ventilation (IMV) that requires endotracheal
intubation. The clearest utility of NIMV is in severe
exacerbations, where there is an acute-subacute increase
of respiratory muscle work, in a pulmonary and systemic
inflammatory context. The concrete indication of NIMV in
COPD patients is the hypercapnic respiratory failure with
severe acidosis but consciousness preservation (230,231).
In this situation, this technique prevents endotracheal
intubation and reduces mortality (230-232). However,
there are a number of factors that can determine the failure
of NIMV in acute patients. The main ones are a poor
nutritional status, a deterioration in consciousness or a poor
general condition (230,233). The evidence of benefits with
NIMYV is much lower in stable COPD patients, although
it could improve survival in those with hypercapnia (234),
reducing their admissions in intensive care units (235).
Nevertheless, IMV may be necessary if NIMV fails.
The beneficial effects of both modalities of ventilatory
support on respiratory muscles and other physiological
components as well as on clinical outcomes are similar,
but IMV increases the number of complications (236).
Moreover, fully controlled forms of IMV should be avoided
as far as possible, since they have serious negative effects
on respiratory muscles, which suffer from deconditioning
and oxidative stress, and become atrophic and functionally
impaired (237-239).

To optimize the control of comorbidities

Several of the most frequent comorbidities associated with
COPD such as chronic heart failure, diabetes or cancer can
also involve muscle abnormalities themselves (5,17,240-242).
Therefore, a good control of these entities should be ensured.

Measures for a bealthy aging

Advanced age is associated with sarcopenia and a worsening
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Figure 2 Summary of the review: (left to right) the main clinical consequences of muscle dysfunction in COPD patients, functional

properties that should be evaluated in their assessment and the main therapeutical measures. COPD, chronic obstructive pulmonary disease.

of muscle function (243,244). Consequently, it is essential
to prevent as far as possible these changes through a
healthy diet, nutritional supplements if necessary, and the
maintenance of an appropriate level of physical activity (245).

Other drugs

It has been recently shown that 'calcium sensitizers', as
levosimendan, are able to improve the strength of the
diaphragm and prevent fatigue both in healthy subjects and
COPD patients (246,247). However, studies on its potential
effects on the limb muscles are still lacking. Transcription
factors such as NF-kappa B and MAPK in turn appear to
have positive effects on muscle mass and therefore, may also
be useful in muscle dysfunction (248). Again, there is a lack
of studies in COPD patients. Some vasoactive drugs such
as dobutamine have also been used in the past to improve
the aerobic capacity of the muscle by increasing blood flow
and therefore, the oxygen supply. However, the results are
controversial (249,250). Something similar has happened
with terbutaline (251,252). In fact, other beta-agonists such
as clenbuterol or formoterol have demonstrated anabolic
effects on muscle mass (253-255). It has very recently been
shown that iron administration results in improvements
in limb muscle function and exercise capacity, even in
COPD patients without anemia (256). This would likely
be the result of an improved transport and use of oxygen
in the muscle by the action of proteins such as myoglobin
and cytochrome C (mitochondrial respiratory chain),
respectively (256,257).

Finally, in the past decades there has been some
interest in the possible beneficial effects of almitrine on the
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function of the diaphragm and other muscles (258,259).
Unfortunately, no clear effects have been demonstrated in
COPD patients. The same has occurred with theophylline,
which showed some promising initial results (260) that have
not been widely reproduced.

Conclusions (Figure 2)

Muscle dysfunction is highly prevalent in COPD patients
and affects both respiratory and peripheral muscles,
conditioning their symptoms, quality of life and mortality.
Whereas respiratory muscle dysfunction is found mainly in
patients with severe disease, limb muscle dysfunction can
be present even in patients with mild-to-moderate stages.
Therefore, an early diagnosis is necessary to ensure a good
therapeutic management. Respiratory muscle dysfunction
can be easily detected in the clinical setting through
determination of maximum respiratory pressures at the
mouth, which are a good expression of their strength. The
maximal voluntary isometric contraction of the quadriceps
is the most used technique for limb muscles. In non-totally
compliant patients electrical or magnetic stimulation can
be used to induce maximal maneuvers in both muscle
groups. Although the assessment of muscle endurance
would probably be more useful than that of strength from
a clinical point of view, its implementation is more complex
and limited to specialized laboratories. The main factor
involved in respiratory muscle dysfunction is pulmonary
hyperinflation, while deconditioning plays a key role in limb
muscle dysfunction. In addition, many systemic factors such
as tobacco, nutritional abnormalities, systemic inflammation
and exacerbations target both muscle groups. Accordingly,
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the therapy should be multidimensional, including
abstinence from smoking, improvement of the nutritional
status (healthy diet and eventually supplements or even
anabolic drugs), good control of the respiratory disease,
increased level of physical activity and training. Some drugs
have recently shown promising results on improving muscle
function in COPD patients, but there is still a lack of
conclusive studies.
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